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I. ION/ION COLLISIONS AND MAXWELLIAN EQUILIBRIUM

Consider two-body collisions among monoenergetic particles of density nc (1/cm 3),

charge Z, at energy EC (eV). The collision frequency f2 is taken as the inverse of the

two-body energy exchange (90" deflection) or slowing-down time, t. (Delcroixt), given by

f2 = 1/t = 1.35E-7 [ncZ 4LN(r)]/[A0"5 (E)1'5] (1)

Here A is the ion mass number and r is the Coulomb impact parameter. The two-body

collision rate density is just q2 = nf 2" Since fusion density is

S= (b i)(nc2)(a v) (2)

where bii is 0.25 (0.5) for differing (identical) ions, the ratio of two-body to fusion

collisions is q2f = q2/qf

q2f = .0E [Z4LN()]/[ Of(E)2] (3)

for collision energy (CM frame) E in eV and cf in barns. Here the particle collision speed

has been taken to be v f = [2EC/mA]0'5 for monoenergetic particles (all fusion reactions

have been assumed to be at 90" incidence) and a, is to be evaluated at vc.

If (afvc) is integrated over the actual collisional energy distribution from the initial

radially-monoenergetic ion energy distribution, fusions are more probable and the

coefficient in eq. (3) will become considerably smaller than given above. For example, for

DT, if EC is taken as 10 keV, and the initial collision energy distribution

EP(e) = E(1--cosO) is used, then the integrated average value of <uv> is about 3.4 times
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larger than for the monoenergetic calculation. Thus, initially - at this mean energy - the

ratio q2f will be 0.29 times that calculated from eq. (3); at E = 20 keV the factor is about
C

0.62.

The mean time for "approximate Maxwellianization"* (t.) can be taken as the

collisional slowing-down time (t), from eq. (1), at the core high density conditions,

divided by the fractional time (g.) that any given ion spends in this region, thus

t 14 = t/g.. However, as shown by Rosenbluth et a12 the time (tL) to Maxwellianize

particles by upscatter to velocity vL in the high energy "tail" of the diistribution is greater

than this (because of cross-section decrease with energy) by a factor of about

(1/2)(VL/vc) 3, thus the time to Maxwellianize particles to energy EL in the "tail" is

tL = (tnX/2)(EL/Ed)1"5

It is evident that an increase from EC to 6Ev, say, requires about 7.2t MX. If E is

initially at 10 keV, for example, then the tail of the distribution will be filled at 60 keV in

this time. Now, at this higher energy the fusion cross-section for the fast particles (of DT)

with bulk ions is about 20 times larger than for monoenergetic 10 keV ions alone, thus their

fusion reaction rate will be higher by about 20(60/2)0.5 a 110 than that of the (assumed)

initial 10 keV population. These two effects plus the increase in ion speed with (Ec) 0 5 are

responsible for the well-known fact that most fusion reactions in thermalized DT at ca. 10

keV come from regions at 50-60 keV in the Maxwellian tail.
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For monoenergetic ions at 10 keV, q2f is about q2f z 3.1E4, while at 60 keV,

q2f z 210, corrected for all-angle collisions. With such collisionality the bulk collisions in

the central core (r _< r.) will tend to distort the core in energy distribution from its initial

form. However, it is important to note that the two-body collisions in eqs. (1) and (3) do

not'involve the same ions from one moment to the next. This is because each ion resides in

the core only a small fraction of its transit time across the system, thus the rate of

collisional energy scattering is much less than would be adduced from the calculation of q2fP

above.

The time any given ion spends in the core is just 6t = ro/v , while the time

required for a system transit is 6tR = 2(dr/v(r) integrated from 0 to R. For an assumed

parabolic potential well shape the ion speed is given crudely by v(r) = v[1-<r> 2].5,

where <r> = (r/R). With this the transit time is estimated as StR z irR/vC, so that the

fraction of time spent in the core is given by gi t ro/irR = <ro>/•"

Thus the number of upscattering two-body collisions per ion per fusion reaction

becomes q I = q2f<ro>/; so that the previous examples give only q2 101 for

E = 1E4 eV and q2f= 0.67 for E = 6E4 eV. Since Maxwellianization requires at least
C VC C

t for ions in the bulk and (t / 2 )(EL/Ec)l"5 for the tail ions, it is evident that full

Maxwellianization can not occur for well depths of 25-30 keV or greater, and that the high

energy tail distribution will never be filled for such mean core energies.

Core mean energies below this collisional energy range can result in Maxwellian

distributions waIl out into the tail. For Maxwellian distributions in the core, the q2f ratio

can be written for DT with a Maxwell-averaged <uv>m at core mean energy Em as
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q 2m :' 3.2E-7 [LN(l")]/[<o'v>(Em )1.5] (4)

Taking the Coulomb factor to be LN(r) = 10 as typical, this yields q2mf z 200 at

E % 5E4 eV as the average number of two-body energy exchange collisions per average

fusion event. However here, as before, ions in the tail can have much higher fusion reaction

rates, thus will tend to be reacted before reaching full Maxwellian density equilibrium for

Em << E-at-peak--cross-section.

Now, ions with energies EL > E in the Maxwellian tail will circulate to radial

postions further out than the ion injection radius, rinj < R. As the Maxwellian tail is built

up by continuous collisions within the small central core, these fast ions will climb further

and further out until they are eventually lost to the system. If the well is three times

deeper than the potential at the injection radius, fast ions must have resided in the core

collision system for (31"5)/2 z 2.6 times the two-body collision time, t.. If the well is six

times deeper, the fast ion residence time would be ca. 7.2t . In this case the fast ions at
U

EL > 6Er will all escape from the system. The energy they carry at escape is small,

however, in that their fast tail energy is lost to the confining well before their departure

from the system.

Ion collisional makeup will be required to supply the thus-truncated tail, but at a

rate of only about 2(Em/EL)1"s u 0.13 times that of the basic two-body colliF.on process.

This energy exchange rate is just q2 = nf2, from eq. (1), and is q2 2 1.0E21 coll/sec/cm3 in

the core with n = 1E17/cm3 at E = 5E4 eV. If the core radius is r = 1 cm, the total

collision rate Q2 = q2(core volume) is Q z 4.3E21 coll/sec. However, any given ion is only

in the high density core region for a fraction g, of its lifetime within the system, thus the

rate of upscattering of each ion in the system will be less by this factor than would be

estimated from the expression for loss to a sink at energy EL above core energy EC (or EM).
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Thus the actual loss rate for this example would be

QL = 2g.Q 2(Ec/E) 1 "5  (5)

The ion in-core time fraction is (as previously shown) about g, = <ro>/x. With

this, for a convergence ratio of <r,> = 1E-2, the previous example gives a DT mass loss

rate of (dM/dt)'DT z 2.74E-4 gm/sec to EL > 6E . This is a volumetric loss rate of about

1.5E-3 liter atm/sec, adding a leakage gas load to the vacuum pumping system. Note that

the energy of these escaping ions outside the system is not 6Em but is very small; most of

their energy has been given back to the well; this loss should not create any significant

problem of ion sputtering external to the system. If E = 2E4 eV, the loss rate is fourC

times greater for EL > 6 Em and eleven times greater for EL > 3 Er. Loss rates for this

latter case would be 1.87 mg/sec or 1.68E-2 liter atm/sec. If pumping capacity is 3E4 liter

atm/sec this would limit the system base pressure to about 5.7E-7 atm.

The system net energy gain (balance) will be little affected, since most energy loss is

due to electron escape through the cusps. Note that this gain IS reduced by the factor of

increased electron injection energy required to create a deeper well to hold upscattered

ions, vs. the minimum well depth needed for core ion energy alone. But deeper-than-

core-energy wells are required anyway, to allow ion injection deep enough within the

magnetic field surface to avoid excessive transverse ion momentum generation in core ion

recirculating flow.
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II. ELECTRON THERMAUZATION

Electron collisional thermalization will also occur, but principally in regions of large

density; and in these regions the electron energy is low. In the core the relevant collision

type is that of ion collisional heating of electrons. The relaxation time for equilibration in

such collisions is (mi/m.) longer than that for electron self-collisional relaxation. Thus,

since ion/ion two-body collisional relaxation is slower by the square root of this factor, ion

heating of electrons will be slower than ion two-body collisions by this same factor,

(mi/m) 0°5.

There are two points of interest here. First is the electron thermal-ization time

compared to the electron lifetime in the high density core, as limited by G transits before

cusp escape. Spitzer3 gives this time as

.OE6A A E E

teq= [njz 2LN (r)][A+A] (6

For a core radius of r = 1 cm, an assumed electron energy of e.g. 1 keV in the core,

so that vec - 1.8E9 cm/sec, and an electron current recirculation factor of G.j = 1E5, the

core lifetime is t e I.1E-4 sec. At this electron energy, with ion energy of EC = 5E4 eV

and LN(r) = 20, the ion/electron equilibration time for n, = 1E17/cm3 , for example,

would be teq Pj 6.7E-6 sec from eq. (6), above. Thus, 1 keV electrons will be well

thermalized after only a few thousand passes through the core. The assumed (low) electron

energy therefore is not valid.

At the other extreme, assume that the electrons have energy of5E4 eV (as though

already in equilibrium with core ions). Then the equilibration time is teq - 2. 1E-3 sec,
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while the lifetime in the core is only tee z 1.6E-5 sec; about 130 times less than this.

Thus electrons in this example will not remain cold, nor will they reach ion

temperatures/energies. Rather, the electron energy will tend to reach an equilibrium

value when t = t , or when the core lifetime 2G ro/v = 1.7E8(Ee)1I'/(niZ2 LN(r)).value chntc eq'

For v. = (2E e/m.)05 this gives the equilibrium core electron energy as

Eeleq z 1.45E-8Z[niroG.LN(r)]°' 5 (eV). If ni = 1E17/cm3 , r0 = 1 cm, LN(r) = 20, then

E = - 6.7E3 eV. For higher ion density, e.g. n. 1E18/cm3, this is still only - 20 keV.e eq 1

However if G. -> lE6 the calculated equilibrium electron temperature for this last casea

becomes an unphysical 63 keV, and electron losses would become greatly enhanced by core

thermalization.

For more realistic, lesser (initial experimental) conditions, electron thermalization is

not significant. For example, for G. = 1E3, ni = 1E12/cm 3, and r0 = 1 cm, this simple

model gives E ' z 2.1 eV. Since this is very much less than (me/mi)E. for all9teq

E. > 2E4 eV, the ion collision rate with electrons would dominate, and the equilibration1

electron temperature due to ion/electron collisions is expected to be only

Eeleq % (me/mi)Ei. This does not take into account electron acceleration by a central

virtual anode, which can raise the electron energy. In general it is expected that core

collisional equilibration of electrons will be insignificant at planned laboratory

experimental conditions and will become noticeable but not dominant as reactor conditions

are approached.

Electron collisions will also occur outside the core region; here the electron density

will tend to follow the ion density. Taking a parabolic distribution as illustrative,

ne)= no(R/r)2 as typical, where n. 0 is electron surface density (n-go =G n and the

electron energy variation also as parabolic, Ee(r) = Eeo(r/R)2, yields the functional

dependence of the equilibration time as teqK )"<> 5 (r/r) 6 /n, where K is a
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factor containing design parameters and constants of the system. From this it is evident

that electron equilibration will proceed much more slowly as r -> R than as r -> ro, and

hence can be neglected at least to first order.

MI. ION/ION COLLISIONAL DISPERSION

Returning to ion collisions, it is of interest to estimate spreading of

initially-radially-monoenergetic energy distributions and of the ion spatial convergence

radius due to ion/ion self-collisions in the core. Lovberg 4 has shown that these effects can

be kept non-dominant in system operation.

The first complete analysis of collisional equilibration of particles with initial

uniform and equal energy was carried out by Maxwell 5 in 1859, who showed that the

stable state distribution of energy (or velocity) was (what we now call) the Maxwell (or

Maxwell-Boltzmann) distribution

fM = (m/2-rkT)1'EXP(-mv2/2kT) (7)

In the central core, ion/ion collisions will produce this distribution, albeit with a

truncated tail (for some conditions, as explained above) with the consequences described

previously. This distribution is achieved by the combined effect of a very large number of

small-angle collisions of each particle with the Coulomb fields of the surrounding particles

that can affect its motion. These are limited to those contained within a sphere around

each particle with radius equal to the Debye shielding radius

LD = (kT/41rne 2)0.5  (8)
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For ion core energies EC > 1E3 eV, the Debye sphere will contain a very large

number of ions for any density n < 1E19/cm3, thus most collisions-deflections will be due

to distant small-angle encounters. Any one collision will yield only a small deflection and

momentum transfer to the deflected particle. The next collision will be uncorrelated in

direction, and successive collisions equally so. The net result is that the spread of particle

moti6n and momentum (and thus of energy) will proceed as a collisional random-walk

process until momentum equivalent to the particle initial momentum is exchanged with the

plasma system.

"At this point the particle will have been deflected approximately x/2 (90") from its

initial course and can be viewed as then having undergone an "energy exchange collision"

of the sort used in the preceding sections herewith. While the time to reach the state of

this "collision" and the energy exchange associated with it are both useful in zero order

analyses (as above) they do not disclose details of the random walk process that are

important in assessing first order effects in core collisionality.

To illustrate these it is useful to consider the random walk problem. Following

JeansO, the random collisional one-dimensional motion of a particle traversing a mean free

path £ between collisions is describable by the probability P that it will have moved a

distance s£ in N collisions, by

P = N!/p!q!2N (9)

where p+q = N and p-q = s. Noting that N is very large in problems of interest and that

s is small relative to N allows this factorial representation to be reduced by Stirling's

approximation (for n! with n large) to the familiar Gaussian form
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P(s) = [2/irN] 0"5[EXP(-s 2 /2N)] (10)

This is the probability that a particle has moved s mean free paths in N collisions

in one-dimensional motion. Rewriting this in terms of particle speed v and time t, and

extending to three dimensions, yields

P(r) = [21Z/vt]1 '5 [EXP(-r 2 /2vtZ)] (11)

as the probability of diffusion to radius r from the origin, in time t, expressed in

one-dimensional spherical coordinates.

This can be applied in two ways to the present problem of diffusion due to

numerous small angle collisions. One way is to determine the radial displacement

associated with a given number of collisions, and thus to obtain a measure of ion dispersion

and associated core convergence defocussing due to same. Another is to estimate the

energy change due to small angle collisions over a given time or collision number.

This latter is straightforward, simply noting that the probability P equally defines

diffusion in energy space, where r -> E (E is total energy spread), with £ -> 6E° as the

energy change per collision (the "energy mean free path"), and v -> fME as the "speed" in0

energy space, thus

P(E) = [2/irt]1'5 [EXP(-E 2 /2ft(6E 0 )2)] (12)

Here the energy exchange per collision is just 6E0 = x(Ze)2 /LD, where LD is the

Debye length, LD = (kT/41ne2)0"5, as usual, or LvD = (E,/61Me 2)0 "5 for the thermalized

case where E -= (3/2)kT.
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The mean free path in coordinate space is just £ = 1/naD where aD is the Debye

sphere small angle collision cross-section (ff. Lovberg4), cD = 'W(LD)2 . The collision

0.5frequency is then simply f = v/C = (nvaD), where v = (2E/mi05) . Now the probability

that a particle will scatter into L= energy 0 < E < a must be exactly unity. Thus the

energy probability P(E) can be normalized to CJP(E)dE = 1, integrating from 0 to ®, from

which it is found that the coefficient C = (rft/26E ), so that the probability of scattering

to an energy displacement E, from initial energy, per unit energy, is just

Po(E) = [(2/ift) 0"5(1/6E )][EXP(-E 2/2ft(6E )2] (13)

With this the most probable value of the scattered energy <E(t)> at any time, from

small-angle collisions about an initial energy state (i.e. the Gaussian full-width at

half-maximum amplitude) is found from

<E(t> JE Po(E) dE = (2ft/ir)0 5 (2E0) (14)

which is analogous to Lovberg's eq. (12) and its predecessor. Using the Debye collision

cross-section as before, this gives an energy dispersion due to small-angle scattering over

time t of

<E(t)> =(2nvt)(Ze)2  (15)

For 10 keV ions uniformly distributed throughout the system at a density of

n = 1E12/cm 3 , and with a system lifetime of t = 1E-2 sec (as in Lovberg's first example),

this yields <E(t)> z 632 eV or * 316 eV as the deviation from mean energy. Note that the

collisional time assumed gives an integrated area density of (ion) collision centers along the
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ion path of about 1E18/fcm 2 for any given ion transiting the uniform system.

As previously shown, the ion system transit time is about bt R = ir(R/v¢), where v¢

is ion speed at core conditions (assuming a relatively flat central region without significant

virtual anode formation). Typically the transit time is 6tR z 3.1E-6 sec for R = 100 cm

and EC = 1E4 eV; this corresponds to about Gi z 3.2E3 ion transits through the system.

This is roughly equivalent to an electron current recirculation factor (outside the

stagnation radius rf) of Gj z Gi(mi/m 0)0° 5 z 1.4E5.

The uniform distribution of ions assumed above is, of course, not realistic for the

system. Rather, the ion distribution will vary approximately as (1/r 2) outside a core of

radius r0, and will increase faster within the core. With this distribution, and assuming a

3:1 density jump at the core boundary, as used for convenience in earlier calculations (e.g.

DTI/19897, Lovberg4), the integrated value of <nvt> = 2GiJn(r)dr, integrated over the

range 0 <. r <5 R, is about 3.32(GinCr). For the Gi value above, this gives a much smaller

value for collisional density than before; here <nvt> z 1.1E16/cm2 which yields an energy

spread of <E(t)> = 63 eV or a half-width of * 31 eV.

As a final example consider a core density of nC = 3E17/cm 3, a core ion energy of

EC = 3E4 eV, r0 = 1 cm and the same number of ion transits as in the previous case.

Then, using the density distributions cited by Lovberg, the total ion path density per unit

area is <nvt> = 3.92E21/cm 2. For this system, the energy spread becomes (eq. 15)

<E(t)> z 2.82E4 eV = 28.2 keV, for a half-width of 14.1 keV. This spread seems

acceptable over such a lifetime, even though the system is significantly (but not

completely) Maxwellianized.

For such a quasi-Maxwellianized core--ion thermal energy (temperature) of
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EC = 30 keV, the initial radial ion injection energy must be about (3/2)EC or 45 keV. The

mean upscatter energy dispersion is, as above, about * 14.1 keV. Allowing for 2.5 times

the mean ion temperature gives a well depth of 75 keV which is sufficient to trap the mean

upscattered ions. Ions inserted into the well at the 45 keV point would be well inside the

rippled B field region, and less prone to transverse momentum generation than for higher

energy injection at larger radii. Lesser well depth could also be used, but at a price in ion

loss rate, as previously described.

It is important to note, in this connection, that the upscatter energy dispersion

given by eqs. (14,15) and used above is only a mean value, and that the actual upscatter

energy follows the Gaussian distribution of eq. (12). This is another way of representing

the eventual stable Maxwellian distribution that will obtain for long-lived trapping of core

ions.

Note, also, that the fusion power output of the last example system will be

Pf = n 2<v>Ef(41r/3)(ro) 3F(<ro>), where F(<ro>) = I + (1-3<r,>)/3 = 1.32. For

EC = 30 keV, <av> z 5.7E-16 cm 3/sec (Maxwellian average), the fusion power generation

becomes Pf 8.0E8 watts or 800 Mw. Thus, operation with DT at conditions useful for

fusion power production seem tractable within the constraints of collisional upscattering.

Of course, well depths must be chosen large enough to avoid bulk two- and three-body

collisional problems in all events, as these are both strongly well-depth dependent.

As a last topic, consider the coordinate spreading introduced by small angle

scattering. The coordinate probability given by eq. (11) can be normalized to unity, as was

done for spreading in energy space, by integration over 0< r <s. Noting that the mean

free.path is £ = 1/nED, carrying out the integration gives the normalizing coefficient as

K = (Irvt)(naD/2)2, and the probability of reaching a displacement r, per unit path length,
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"becomes

Po(r) = [naD/2'vt]0'[EXP(-(naD/2vt)r 2)] (16)

The most probable displacement over any given time period <6r(t)> is just the

function rP(r) integrated over the complete range of r. This yields

<6r(t> = (vt/21rnaD) 0"5 = (6e2t/r)O' 5/(2mE¢) 0.25  (17)

for aD = "r(LD)2 and LD = (E/61mne 2)0 5 as before. Using the previous examples, the mean

displacement due to small angle collisional distortion of the initial energy distribution is

found to be only <6r(t)> = 3.8E-3 cm for nc = 1E12/cm3, EC = 1E4 eV, and t = 1E-2

sec. For the more realistic case of non-uniform density, where vt = 2G.R z 0.62E6 cm

(rather than 0.62E8 cm as in the initial case) this is found to be only 8.6E-4 cm for the

same ion recirculation factor Gi. It thus appears that energy exchange collisions will not

contribute directly in any significant way to core convergence sial broadening.

However, the upscattering of energy will cause ions to orbit to larger radii, and thus

to enter regions of larger B field, in which the B field structure is more pronounced (as d.

to near-sphericity in the core region). This (outward) penetration of stronger and more

rippled B fields will result in the transformation of a larger fraction of ion radial energy

into transverse momentum than for orbits to smaller radii. This larger transverse

momentum, in turn, can defocus the ions in their subsequent transits of the core region,

and may even result in the trapping of ions in orbit paths well outside the original core

radius.

The upscattering process thus results in core convergence broadening from the
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indirect effect of increased transverse momentum generation due to ion orbit expansion. In

the absence of restoring focussing effects, this process can continue only until the ion core

offset radius is at a distance approximately equal to half of the gyro radius of an ion

calculated as with core energy in the cusp surface field, at which time the ion will cease to

occupy a repetitive orbit, but will leave the system. Such restoring effects may be found in

transverse collisions in the core' and/or at the outer radius of ion motion, as described by

Rosenberg and Krall9 Further exploration of this coupling of energy upscattering to ion

orbit distortion and momentum transformation is required to obtain a good understanding

of these phenomena, and of their effects in various systems.
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